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Abstract—Distance metric learning plays an important role
in many applications, such as classification and clustering.
In this paper, we propose a novel distance metric learning
using two hinge losses in the objective function. One is the
constraint of the pairs which makes the similar pairs (the
same label) closer and the dissimilar (different labels) pairs
separated as far as possible. The other one is the constraint
of the triplets which makes the largest distance between pairs
intra the class larger than the smallest distance between pairs
inter the classes. Previous works only consider one of the two
kinds of constraints. Additionally, different from the triplets
used in previous works, we just need a small amount of such
special triplets. This improves the efficiency of our proposed
method. Consider the situation in which we might not have
enough labeled samples, we extend the proposed distance
metric learning into a semi-supervised learning framework.
Experiments are conducted on several landmark datasets and
the results demonstrate the effectiveness of our proposed
method.
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I. INTRODUCTION

Distance metric learning is an important branch of ma-
chine learning which can be applied to many problems, such
as clustering [1, 2], classification [3, 4, 5], and retrieval [6].
Recently, classification problem has attracted much attention
[7, 8, 9, 10]. In this work, we mainly apply metric learning
to KNN classification problem. The decision rule of KNN
classifier is to compare the Euclidean distance between
different examples. Obviously, Euclidean distance ignores
the intrinsic statistical features that might be estimated from
the given training data. One solution is to find a proper
distance metric which can capture the intrinsic statistical
features when estimate the distance. Previous works have
demonstrated that learning a Mahalanobis distance metric
using labeled data can significantly improve the performance
of KNN classification [4, 5, 11, 12]. Motivated by these
works, we propose a novel distance metric learning method.

Distance metric learning have been paid much attention
over the past years. Some algorithms are very familiar
with us, such as principal component analysis (PCA) [13],
linear discriminant analysis (LDA) [14], relevant component
analysis (RCA) [15], and discriminative component analysis
(DCA) [16]. All these methods use labeled or unlabeled data

points to learn a linear transformation of the input feature
space, which is equal to indirectly learn a Mahalanobis
distance metric. Other methods directly learn a Mahalanobis
distance metric, such as regularized distance metric learn-
ing [5], information-theoretic metric learning [17], semi-
supervised distance metric learning [18]. All these methods
use pairwise constraints to learn a Mahalanobis distance
metric learning. However, they ignore the relative distance
between pairs inter the classes and pairs intra the class,
which helps better separate different classes.

Consider the drawbacks of pairwise constraints, our work
uses both pairwise constraints and triplet constraints, which
is inspired mainly by regularized distance metric learn-
ing (RDML) [5] and large margin distance metric learn-
ing (LMNN) [4]. Regularized distance metric learning is
a simple but an efficient online distance metric learning
method. The most important contribution of RDML is that
it demonstrates that the generalization error of regularized
distance metric learning could be independent from the
dimensionality with proper constraints. LMNN considers
such relative distance constraints, however it considers all
impostors that invade the perimeter plus unit margin defined
by any two similar pairs. When the amount of training
samples increases, the computational time will grow rapidly.
In fact, we can consider the largest distance pairs intra the
class and the smallest distance inter the class instead. This
will dramatically decrease the amount of triplets we need to
compute.

Additionally, manually labeled data samples sometimes
are difficult to get in real world because of waste of time
and energy. Some semi-supervised distance metric learning
methods [6, 18, 19] have been proposed to handle such prob-
lem. For this consideration, we also extend our proposed dis-
tance metric learning method into a semi-supervised learning
framework to improve the performance using unlabeled data.
We assume that all the classes are well-separated and few
examples fall into the margin. Consequently, unlabeled data
points are enforced to belong to one of the classes and
provide more information for distance metric learning.

We organize the remainder of this paper as follows.
Section II introduces related works. In Section III, we intro-
duce our proposed regularized large margin distance metric
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learning in detail and extend the proposed method into a
semi-supervised framework. An optimization algorithm is
proposed in Section IV. Section V shows several experi-
ments which demonstrate the effectiveness of our proposed
distance metric learning. In Section VI, we conclude our
work.

II. RELATED WORK

Some of the machine learning algorithms, such as Kmeans
and KNN classifier, need to compute the distance between
data points. Regular Euclidean distance just considers the
distance in the original feature space and ignores the in-
trinsic statistical features that might be estimated from data
transformation.

Consider the drawbacks of regular Euclidean distance,
researchers have paid attention to distance metric learning
over the past few years. Various distance metric learning
methods have been proposed to better measure distance.
One equal method for learning a Mahalanobis distance
metric is to discover informative linear transformations of
the input space, such as PCA, LDA, RCA and DCA. PCA
is an unsupervised learning method, which is often used for
dimensionality reduction or data de-noising. Unlike PCA,
LDA utilizes the distribution of labeled data and learns a
more reliable linear transformation for classification. Bar-
Hillel et al. proposed a more efficient non-iterative RCA
to learn a Mahalanobis metric using both labeled data and
unlabeled data [15]. DCA, which utilizes the information of
negative constraints, is an extension of RCA.

Mahalanobis metric can also be learned directly. Wein-
berger and Saul proposed a large margin nearest neighbor
distance metric learning using triplet constraints with the
goal that k-nearest neighbors always belong to the same
class while examples from different classes are separated by
a margin [4]. Recently, Qian et al. proposed an efficient dis-
tance metric learning by adaptive sampling and Mini-Batch
Stochastic Gradient Descent [20], which also uses the triplet
constraints. Jin et al. proposed a regularized distance metric
learning with the generalization error being independent
from the dimensionality, which can handle high dimensional
problem [5]. Jason et al. propose an information-Theoretic
metric learning, which minimizes the differential relative
entropy between two multivariate Gaussian under constraints
on the distance function [17]. All these algorithms directly
learn a Mahalanobis metric using pairwise constraints or
triplet constraints. In this paper, we use both pairwise con-
straints and triplet constraints to learn a Mahalanobis metric,
which can provide more information about the distribution
of the data.

In real world, we often encounter the situation in which
not enough labeled data can be obtained because of the
limitation of experiments and equipments. Semi-supervised
learning algorithms are proposed to handle such problem.
For example, Hoi et al. proposed a semi-supervised distance

metric learning method for image retrieval through pre-
computing the nearest neighbors using regular Euclidean
distance metric learning in the original feature space [6].
Baghshah and Shouraki proposed a semi-supervised distance
metric learning considering the topological structure of data
along with both positive and negative constraints. And
they also extended it into a kernel-based distance metric
learning [18]. Yu et al. propose a semi-supervised multi-view
distance metric learning for cartoon synthesis from multiple
feature sets and unlabeled cartoon characters simultaneously
[19]. Consider the hinge loss in our objective function, we
extend our regularized distance metric learning into a semi-
supervised learning framework similar to semi-supervised
support vector machine [21] with the assumption that the
classes are well-separated and few unlabeled data points fall
into the classification margin.

III. REGULARIZED LARGE MARGIN DISTANCE METRIC

LEARNING

In this section, we will give a detailed introduction to
our regularized large margin distance metric learning. First,
we introduce the pairwise constraints and triplet constraints
in our objective loss function. Second, we extend our reg-
ularized large margin distance metric learning into a semi-
supervised framework.

Before introducing our regularized semi-supervised large
margin distance metric learning, we give a general frame-
work of semi-supervised distance metric learning as follows:

min
A

gl(A) + βgu(A) + λR(A)

s.t. A � 0
(1)

where A ∈ Sd×d
+ is a positive semi-defined metric. gl(A) is

a loss function of labeled data, gu(A) is the loss function
of unlabeled data, and R(A) is a regularizer on distance
metric A. β and λ are two positive trade-off parameters. β
is used to balance the weights between the loss of labeled
data and unlabeled data. λ is used to control the complexity
of the model. We give a detailed introduction to the loss
gl(A), gu(A) and R(A) in the following section.

A. Pairwise Constraints in Distance Metric Learning

Suppose we have a set of data points in a d dimensional
vector space {xi}mi=1 ⊆ Rd. And two sets of pairwise
constraints are given according to the labels.

S = {(xi, xj)|xi and xj belong to the same class},
D = {(xi, xj)|xi and xj belong to different classes}, (2)

where S denotes the set of similar pairwise constraints
and D denotes the set of dissimilar pairwise constraints.
If (xi, xj) ∈ S, yij = 1; otherwise yij = −1. The distance
between xi and xj under distance metric A is denoted as
dA(xi, xj) which can be formulated as follows:

d2A(xi, xj) = ||xi − xj ||2A = (xi − xj)
TA(xi − xj).
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When A is a identity matrix, the above distance reduces to
a regular Euclidean distance. Using the eigenvalue decom-
position, A can be decomposed into A = LTL. Thus, the
above formulation is equal to the following:

d2A(xi, xj) = (xi − xj)
TA(xi − xj)

= (xi − xj)
TLTL(xi − xj)

= (Lxi − Lxj)
T (Lxi − Lxj).

(3)

Thus, learning a Mahalanobis matrix is equal to learn a linear
transformation.

In general, the loss of pairwise constraints in distance
metric learning has two kinds of effect. One is to pull the
set of similar pairs closer and the other is to push the set of
dissimilar pairs far away. This can be expressed in different
formulations [5, 6, 14, 22]. We focus on [5], in which the
loss of pairwise constraints is formulated as a hinge loss:

gp = max(0, b− yij(1 − ||xi − xj ||2A)), (4)

where b is the classification margin and gp denotes the
loss of pairwise constraints. This hinge loss tends to make
the distance between similar pairs smaller than unit 1 and
distance between dissimilar pairs larger than unit 1 through
a margin b.

B. Triplet Constraints in Distance Metric Learning

In distance metric learning, triplet constraints are usually
used to measure relationship between the intra-class distance
and the inter-class distance. Large margin nearest neighbor
(LMNN) distance metric learning [4] is one of the state-of-
art methods which uses the triplet constraints. The loss of the
triplet constraints in LMNN can be formulated as follows:

gt = max(0, 1 + ||xi − xj ||2A − ||xi − xl||2A), (5)

where (xi, xj , xl) is one triplet. For data point xi, xj is one
of xi’s target neighbors in the same class, i.e., yi = yj . xl

has different label from xi and xj . The hinge loss penalizes
the imposter xl which invades the perimeter plus unit margin
defined by target neighbor xj of the input xi. However, it
is time consuming if we consider all the triplets. Instead,
we just consider the largest distance neighbors intra class
and the smallest distance inter classes in this paper. This is
illustrated in Figure 1. For input x1, data points x2, x3, x4

are 3 target neighbors and x5, x6 are two data points in
another class. LMNN will consider all the imposters x5, x6.
Thus LMNN needs to compute 6 triplets in Figure 1. Instead
we just consider the largest intra-class distance between pair
(x1, x3) and the smallest inter-class distance between pair
(x1, x5). Thus we just need to compute one triplet. So for an
input xi, we find our triplet T = {(xi, xj , xl)} as follows:

xj = max
xp

d(xi, xp), s.t. yp = yi,

xl = min
xq

d(xi, xq), s.t. yq ∈ {C − yi},
(6)

where C is the set of all class labels and {C − yi} means
the set of all class labels except label yi.

After we have given the loss of pairwise constraints and
triplet constraints, the loss function gl in equation 1 can be
formulated as follows:

gl = gp + gt. (7)

Then we can formulate our regularized large margin distance
metric learning (RLMM) as follows:

min
A

∑

(xi,xj)∈S∪D
max(0, b− yij(1 − ||xi − xj ||2A))

+ γ
∑

(xi,xj,xl)∈T
max(0, 1 + ||xi − xj ||2A − ||xi − xl||2A)

+ λ||A||2F
s.t.A � 0

(8)
where R(A) = ||A||2F is the Frobenius norm of metric A
and controls the complexity of the distance metric A [5].
Note that ||A||2F is not the only choice; other regularization
forms can also be considered. We will extend our RLMM
into a semi-supervised framework in the following section.

C. Unlabeled Data Constraints in Distance Metric Learning

In real world, many tasks have a paucity of labeled data.
The labels are difficult to obtain because of the requirement
of human annotators, special devices, or expensive and
slow experiments [23]. Semi-supervised learning methods
are proposed to handle such problem.

The idea of our semi-supervised learning can be illustrated
in Figure 2. For an input x1, if we just have labeled data
points x1, x6 and x7. After learning a distance metric, the
distribution of the data points is illustrated in Figure 2(a).
With additional unlabeled data points x2, x3 and x4, under
the assumption that the classes are well-separated and few
examples fall into the margin, the learned distribution of all
the data points after semi-supervised distance metric learning
is illustrated in Figure 2(b). We consider the loss function
gp:

gp =max(0, b− yij(1 − ||xi − xj ||2A))
=max(0, b− yijR),

(9)

where R = 1 − d2A(xi, xj), which is the residual distance
of d2A(xi, xj) to the unit boundary. For unlabeled data
pair, the yij is unknown. However, we can assume that
ŷij = sign(1 − ||xi − xj ||2A) is the true label of pair
(xi, xj) according to the assumption that the classes are
well-separated and few examples fall into the margin. From
this point of view, our semi-supervised constraint is similar
to semi-supervised support vector machines [21], and the
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Figure 1. Triplet constraints comparison between our method and large margin nearest neighbor distance metric learning.

loss functions can be formulated as follows:

gu = max(0, b− sign(1− ||xi − xj ||2A)(1 − ||xi − xj ||2A))
= max(0, b− |1− ||xi − xj ||2A|),

(10)
which is illustrated in Figure 3. If the residual distance of
pair (xi, xj) falls into margin [−b, b], it will be penalized.
Consequently, the unlabeled pairs are pushed away from the
classification margin.

We now give the objective function of our proposed semi-
supervised regularized large margin distance metric learning
(S-RLMM) as follows:

min
A

∑

(xi,xj)∈S∪D
max(0, b− yij(1 − ||xi − xj ||2A))

+ γ
∑

(xi,xj,xl)∈T
max(0, 1 + ||xi − xj ||2A − ||xi − xl||2A)

+ β
∑

(xi,xj)∈U
max(0, b− |1− ||xi − xj ||2A|) + λ||A||2F

s.t. A � 0
(11)

where γ, β, λ are trade-off parameters and U is the set of
unlabeled pairs.

IV. AN OPTIMIZATION ALGORITHM

Although the loss function in equation (11) is non-smooth,
it is convex. Therefore we can compute its sub-gradient and
use gradient descent method to find its minimum. Consider
the positive semi-definite constraint of metric A, we project
metric A onto the semi-definite cone after every step of
gradient descent [4, 6]. The detailed optimization algorithm
is shown in Algorithm 1.

For simplicity, we write Mij = (xi − xj)(xi − xj)
T .

Obviously, the distance between data points xi and xj under
metric A can be reformulated as follows:

d2A(xi, xj) = (xi − xj)
TA(xi − xj) = tr(AMij), (12)

Figure 3. The hinge loss of unlabeled data with respect to residual distance
R.

where tr( ) is the trace operator. Consequently, we can
reformulate the loss function in equation (11) as follows:

L =
∑

(xi,xj)∈S∪D
max(0, b− yij(1 − tr(AMij)))+

γ
∑

(xi,xj,xl)∈T
max(0, 1 + tr(AMij)− tr(AMil))+

β
∑

(xi,xj)∈U
max(0, b− |1− tr(AMij)|) + λ||A||2F

(13)
We use At to denote the distance metric at the t-th iteration.
The gradient of the loss at iteration t can be formulated as
follows:

Gt =
∂L

∂At
=

∑

(xi,xj)∈Ŝ∪D̂
yijMij+

γ
∑

(xi,xj,xl)∈T̂
(Mij −Mil) + β

∑

(xi,xj)∈Û
ŷijMij + 2λA,

(14)
where Ŝ, D̂, T̂ , Û are the sets of data that trigger the hinge
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Figure 2. (a) Distance metric learning without using unlabeled data points. (b) Distance metric learning with unlabeled data points under the assumption
that the classes are well separated and few examples fall into the margin.

loss correspondingly.
The minimization of equation (11) is under the constraint

that matrix A is a positive semi-definite matrix. To enforce
this constraint, we project the metric A onto the semi-

definite cone after every gradient step. Let A =
n∑

i=1

λiqiq
T
i

be the eigen decomposition of metric A, the projection of
A onto the semi-definite cone is given as follows:

ΠS(A) =

n∑

i=1

max{0, λi}qiqTi . (15)

This projection ignores all the negative eigenvalues and
keeps the positive eigenvalues, in order to enforce metric
A to be a positive semi-definite matrix.

V. EXPERIMENTS

In this section, we conducted experiments on several
landmark datasets including three small datasets and one
larger dataset. The three small datasets are wine dataset,
balance-scale dataset and breast-cancer dataset from UCI
repository. One larger dataset is the isolet dataset. These
datasets have been widely used to evaluate the effectiveness
of previous distance metric learning works [4, 5, 17, 24].
We compare our proposed regularized large margin distance
metric learning (RLMM) and the semi-supervised extension
of our regularized large margin distance metric learning (S-
RLMM) with following state-of-the-art methods: (1) Regular
Euclidean distance metric; (2) Relevant component analysis
(RCA) [15]; (3) Information-theoretic metric learning (ITM-
L) [17]; (4) Distance metric learning of large margin near-
est neighbor (LMNN) [4]; (5) Regularized distance metric
learning (RDML) [5]; (6) A semi-supervised distance metric
learning (SSmetric) [6]. Although the margin b in loss gp and
gu should be selected to get the best performance according
to different experiments, we set b = 0.5 to improve the
efficiency of the experiments which usually gives a good
results.

A. Experiments on Small Datasets

In this section, we show experimental results on three
small datasets: (1) wine dataset, which has 3 different
classes, 178 distances in a 13-dimensional vector space; (2)
balance-scale dataset, which has 3 classes, 625 instances
in a 4-dimensional vector space; (3) breast-cancer, which
has 2 different classes, 683 instances in a 10-dimensional
vector space. For all the datasets, we randomly select 10%
of the data as training set and the rest is split into two halves
for validation and test correspondingly. The best parameters
of all the compared methods are chosen on validation set
according to the corresponding papers. For our proposed
method, we set the trade-off parameters γ, β, λ over the
range from 10−4 to 104. Best parameters are chosen on
validation set. We repeated the random splits 5 times to
avoid randomness. And we evaluate the performance using
1-nearest neighbor classification.

Table I shows results on these three datasets. Obviously,
all the distance metric learning methods outperform the
regular Euclidean distance metric except RCA. Our semi-
supervised regularized distance metric learning achieves the
best performance on all three datasets. Additionally, our
proposed regularized distance metric learning outperforms
other distance metric learning methods except SSmetric
on wine dataset. The results also show that using only
pairwise constraints or triplet constraints may miss some
distribution information of the data, our methods combine
these two types of constraints leading to better performance.
The reason our RLMM performs worse than SSmetric on
wine dataset is that RLMM doesn’t use unlabeled data while
SSmetric is an unsupervised method.

B. Experiments on Isolet Dataset

We also conducted experiments on Isolet dataset. This
dataset was collected from 150 speakers. Each speaker spoke
all the English letters of the alphabet twice, i.e., each speaker
provided 52 data examples. This dataset was separated into
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Algorithm 1 Semi-supervised Regularized Large Margin Distance Metric Learning

Input: labeled data Dl = {(xi, yi)}ml

i=1, unlabeled data Du = {(xi)}mu

i=1, pairwise constraint sets D,S, U and triplet
constraint set T .

Output: A
1: Initialize A = I as identity matrix.
2: while (not converge) do
3: Gt+1 = ∂L

∂At

4: At+1 = ΠS(At − αGt+1)
5: end while

Table I
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED METHODS AND AND SIX BASELINE METHODS ON THREE DATASETS IN TERMS OF

CLASSIFICATION ACCURACY.

Datasets Euclidean RCA ITML LMNN RDML SSmetric RLMM(ours) S-RLMM(ours)
wine 0.7210 0.6444 0.8025 0.8716 0.8074 0.9210 0.8914 0.9210
balance-scale 0.7442 0.8028 0.8028 0.8318 0.7830 0.8184 0.8382 0.8643
Cancer 0.9480 0.9427 0.9506 0.9513 0.9176 0.9487 0.9519 0.9552

5 sub-datasets according to the speakers. The 5 sub-datasets
have 1560, 1560, 1560, 1558 corresponding samples and
each English letter corresponds to a label (1-26). We condcut
classification on these 5 sub-datasets separately and compare
the mean accuracy. We first preprocess the data with PCA
by reducing the dimensionality to 50. And we randomly
select about 10% of the data as training set and the rest is
split into two halves for validation and test respectively. We
repeated this experiment 5 times to avoid randomness and
all parameters were determined using the same method as
in the above experiment.

From Table II, we can conclude that RCA and regular Eu-
clidean distance have similar performance on isolet dataset.
Additionally, our proposed regularized large margin distance
metric learning performs the best on 3 sub-datasets and the
semi-supervised extension method S-RLMM outperforms
other methods on the other 2 sub-datasets. On average RLM-
M achieves the best performance 81.36%. The reason S-
RLMM performs slightly worse than RLMM on average on
isolet dataset is that any semi-supervised learning methods
are not able to improve the performance on all the problems.
In fact, unlabeled data can lead worse performance with
wrong assumptions. So it is a normal phenomenon that our
S-RLMM has similar performance with RLMM on isolet
dataset.

C. Analysis on Training Ratio

In this section, we analyse the experimental results with
different training ratio on balance-scale dataset. We random-
ly select 5%, 10%, 20%, 30%, 40% of the data as training
set. And the rest is split into two halves for validation
and test. The experimental results are shown in Figure 4.
We can conclude that all distance metric learning methods
perform better than regular Euclidean distance metric, and
our proposed RLMM outperforms all other supervised dis-
tance metric learning with different training ratio. SSmetric

achieves better performance than our RLMM when the train-
ing ratio is 0.2 and 0.3. However, our S-RLMM have much
better performance than all the other methods with different
ratio, which demonstrates the stability and robustness of our
proposed methods.

VI. CONCLUSION

In this paper, we propose a novel regularized large margin
distance metric learning using both pairwise constraints and
triplet constraints. Our triplet constraint is a kind of special
one, which makes the largest distance between pairs intra
the class smaller than the smallest distance between pairs
inter the classes. We just need to find a small amount of
such triplets, which improves the efficiency of our method.
Additionally, the proposed regularized large margin distance
metric learning is extended into a semi-supervised frame-
work. Extensive experiments on several landmark datasets
demonstrate the effectiveness of our proposed method.
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